Мусорный пояс

Ракета-носитель Falcon 9 несколько дней назад вывела на орбиту космический грузовик Dragon, на борту которого находится экспериментальный космический мусорщик, аппарат RemoveDebris. Он позволит проверить на практике технологию уборки отработавших свое космических аппаратов и их фрагментов с помощью гарпуна и сети. Насколько замусорено околоземное пространство? Хватит ли в нем места для новых спутников? Мы решили разобраться в этом вопросе с помощью научного сотрудника Института прикладной математики имени М.В. Келдыша Михаила Захваткина.

Таким аппаратам, как RemoveDebris, будет чем заняться. Согласно данным программы NASA по изучению космического мусора, количество мусорных объектов размером больше 10 сантиметров приближается к 20 тысячам, а их суммарная масса — к 8 тысячам тонн, при этом большая их часть — обломки космических аппаратов.


По расчетам Европейского космического агентства, число объектов размером больше одного сантиметра достигает 750 тысяч, а фрагментов меньшего размера может быть в тысячи раз больше. Огромное количество мелких фрагментов микронного размера порождает работа двигателей, среди них очень много мелких частичек краски, и эта рукотворная пыль уже сегодня наносит реальный ущерб, оставляя дыры и микрократеры в корпусах и на солнечных батареях космических аппаратов.

Откуда берется мусор

При этом запасы мусора на орбите постоянно пополняются — каждый год в околоземном пространстве появляется около сотни новых космических аппаратов, причем это не только спутники, это еще и третьи ступени ракет, разгонные блоки.

Рано или поздно интенсивное заселение орбиты должно было привести к «коммунальным проблемам», и в 1978 году сотрудники NASA Дональд Кесслер и Бертон Кур-Палэ пришли к выводу, что в скором будущем столкновения между вышедшими из строя спутниками начнут происходить так часто, что количество обломков будет расти экспоненциально (даже если в этот момент космические запуски прекратятся вообще) и в конечном счете вокруг Земли сформируется кольцо из обломков космических аппаратов, похожее на кольцо Сатурна. Они предсказывали, что первое столкновение космических аппаратов произойдет еще до 2000 года. В реальности столкновение спутников «Космос-2251» и Iridium 33 произошло 19 февраля 2009 года, причем их «встреча» породила сразу 1150 настолько крупных обломков, что их могли заметить радары системы контроля космического пространства.

Хотя синдром Кесслера — неконтролируемую цепную реакцию разрушения аппаратов на орбите и превращение околоземного пространства в запретную зону — мы пока можем наблюдать только в фильмах, таких как «Гравитация» или «Валли-И», космический мусор уже сейчас становится ощутимой помехой. Достаточно вспомнить, что Международной космической станции (МКС) регулярно приходится корректировать орбиту, чтобы избежать столкновений, а еще чаще космонавтам приходится бросать все дела и забираться в корабль «Союз», чтобы переждать момент опасного сближения станции c фрагментом космического мусора. Детали, доставленные на Землю с МКС, часто несут микроповреждения — следы ударов мелких мусорных обломков.

Некоторое самоочищение околоземного пространства все же происходит, объясняет научный сотрудник Института прикладной математики имени М.В. Келдыша Михаил Захваткин. По его словам, в пределах 11-летнего цикла солнечной активности около 250–300 мусорных объектов в год приходится исключать из каталогов — они попросту входят в атмосферу и сгорают. Но скорость этого очищения очень сильно меняется в зависимости от фазы цикла солнечной активности (в периоды активного Солнца атмосфера Земли «разбухает» и начинает сильнее тормозить объекты) и от высоты орбиты.

«Хотя влияние атмосферы ощущается на высотах до 1500 километров, действительно эффективно атмосферный тормоз работает только на низкой околоземной орбите, то есть на орбитах высотой до 500–600 километров. В этой зоне спутники без постоянного подъема орбиты с помощью двигателей могут просуществовать максимум пару десятков лет, затем они войдут в атмосферу и сгорят. Но уже на высотах 700-1000 километров космические аппараты могут находиться 50-100 лет, то есть в масштабах человеческой жизни — практически вечно. Причем эти орбиты наиболее популярны, там очень много солнечно-синхронных спутников, потому что им не нужно тратить много топлива, чтобы поддерживать эту орбиту. На эти высоты запускают много аппаратов, потому что они могут выжить там достаточно долго», — говорит ученый.


Этаж от 700 до 1000 километров — самый популярный и заселяется быстрее всего, однако даже на этих высотах реализация катастрофического сценария, описанного Кесслером, — дело далекого будущего.

«На низких орбитах вращается 13 тысяч спутников, за 200 лет при самом негативном сценарии их число возрастет до 100 тысяч, а значит, вероятность столкновений вырастет примерно в 100 раз. Сегодня вероятность катастрофического столкновения — примерно один раз в пять лет, с ростом вероятности столкновений мы получаем значение примерно 20 инцидентов в год на популяцию в 100 тысяч аппаратов. Это не настолько высокий риск, чтобы сделать запуск спутников в эту зону коммерчески бессмысленной», — объясняет Захваткин.

Однако, полагает ученый, не следует усугублять проблему, оставляя ее решение будущим поколениям, поэтому меры для борьбы с загрязнением околоземного пространства нужно прорабатывать уже сейчас.

COM_SPPAGEBUILDER_NO_ITEMS_FOUND