Как льют алюминий: репортаж с завода

В мифологии боги из глины создали человека. В реальной жизни человек создает из глины алюминий. В 2016 году «TechInsider» побывала на Хакасском алюминиевом заводе и выяснила, как это делается.

В электролизном цехе Хакасского алюминиевого завода (ХАЗ) Объединенной компании «РУСАЛ» я подхожу ближе, чтобы заснять внутренности электролизера, где на дне ванны плещется светло-вишневый слой расплавленного металла. Достаю фотокамеру, включаю, но на экране высвечивается надпись «Включите и снова выключите камеру». Однако рекомендованные действия не приносят результата: камера вообще перестает реагировать на что-либо. Сопровождающие инженеры-технологи с улыбкой смотрят на мои попытки справиться с капризной электроникой. Теперь я понимаю, почему мне рекомендовали не брать с собой в цех часы и телефон: магнитное поле, порожденное постоянными токами в сотни тысяч ампер, могло бы необратимо вывести их из строя. В итоге удается сфотографировать только общий план: камера возвращается к жизни лишь метрах в пятнадцати от массивного электролизера.


Производство алюминия. Этап 1.

От Плиния до наших дней

Плиний Старший упоминает легенду о том, что однажды римскому императору Тиберию преподнесли чашу из металла, похожего на серебро, но очень легкого. Мастер, изготовивший чашу, утверждал, что металл получен из глины, и Тиберий, опасаясь, что этот металл обесценит все его серебро, приказал казнить изобретателя, чтобы сохранить секрет. Неизвестно, насколько правдива эта легенда, но соединения алюминия знакомы людям с самых древних времен, ведь глинозем (белая глина) — это не что иное, как оксид алюминия (Al2O3). Алюминий — третий по распространенности элемент в земной коре (после кислорода и кремния). Свое имя он получил от латинского названия алюминиевых солей, квасцов (двойных сульфатов трех- и одновалентных металлов) — alum, — которые на протяжении многих столетий использовались для окраски тканей и кожи.

Производство алюминия. Этап 2.

Металлический алюминий впервые получил в 1825 году датский физик Ганс Христиан Эрстед восстановлением из хлорида алюминия с помощью амальгамы калия. Двумя годами позднее немецкий химик Фридрих Вёлер использовал для этой цели металлический калий. А в 1846 году Анри Сент-Клер Девилль доработал метод Вёлера с использованием металлического натрия, что позволило получать хоть и малые, но уже не микроскопические количества металла. Тем не менее алюминий еще долгое время оставался очень редким и дорогим металлом. Об этом свидетельствует тот факт, что на одном из приемов, организованных французским императором Наполеоном III, богатство монархии символизировали алюминиевые столовые приборы хозяев и почетных гостей, а остальные гости обходились «обычными» — золотыми — ложками и вилками.

Производство алюминия. Этап 3.

Современная эра алюминия наступила в 1886 году, когда американец Чарльз Мартин Холл и француз Поль Эру независимо друг от друга разработали метод производства этого металла с помощью электролиза. В качестве электролита использовался раствор оксида алюминия (глинозема) в расплаве криолита (фториды натрия и алюминия, Na3AlF6) при температуре около 950 °C. Процесс Холла-Эру составляет основу современного способа получения алюминия и сегодня. Правда, технологии стали намного совершеннее.


Основное сырье для производства алюминия — глинозем, порошкообразный оксид алюминия. Его добавляют в электролизер по мере расходования, содержание глинозема в расплаве (обычно 3−5%) контролируется по напряжению между электродами. I. Для получения 1 т алюминия требуется примерно 2 т глинозема. А до того, как попасть в электролизер, глинозем выполняет еще одну важную функцию — служит абсорбентом в газоуловителях, поглощая газы, образующиеся в процессе электролиза. II. Старые технологии производства алюминия предусматривали небольшой расход криолита, угольная пыль приводила к образованию пены (шлака), который время от времени нужно было удалять. Современные технологии в этом отношении гораздо более чистые — криолит не только не расходуется, но даже нарабатывается за счет примесей натрия в глиноземе, который в процессе электролиза реагирует с образующимся фтором. III. Алюминий опускается на дно электролизера, а затем вытягивается вакуумным ковшом. Из ковша он сливается в миксер, где готовятся нужные сплавы. IV. Основные примеси в полученном алюминии — это железо и кремний (обычно менее 1%). Чем их меньше, тем более высоким считается сорт металла. Источники примесей — это аноды, ванна, инструменты, токоподводы и другие элементы электролизера.

Концентрированное электричество

В электролизном цехе алюминиевого завода установлены сотни электролизеров. Каждый из них устроен довольно просто: стальная ванна, представляющая собой катод (отрицательный электрод), наполнена расплавом криолита с температурой около 950 °C, в котором растворен оксид алюминия (глинозем). В расплав погружается анод (положительный электрод). Через электролизер пропускается ток, на аноде выделяется кислород, на катоде — алюминий, который в жидком виде покрывает дно ванны (температура его плавления 660°С). «Наши инженеры шутят, что алюминий — это концентрированное электричество, — объясняет Виктор Манн, технический директор ОК "РУСАЛ". — Получение килограмма металла требует расхода 13 кВт•ч электроэнергии. Когда-то этот показатель был существенно выше, но по мере совершенствования технологий его удалось снизить — и я надеюсь, что удастся снизить еще. Собственно, это одно из направлений наших разработок — добиться понижения потребления электроэнергии за счет оптимизации конструкции анодов, электролизера, уменьшения рассеивания тепла и других факторов».

COM_SPPAGEBUILDER_NO_ITEMS_FOUND